$5\times1=5$

U.G. 4th Semester Examination - 2020

CHEMISTRY

[PROGRAMME]

Course Code: CHEM(G)-CC-T-4

Full Marks : 40 Time : $2\frac{1}{2}$ Hours

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP-A

(Marks: 21)

1. Answer any **three** questions:

 $2\times3=6$

- a) \wedge° of Al₂(SO₄)₃, NH₄OH and (NH₄)₂SO₄ are 858, 238.3 and 238.4 S Cm² eq⁻¹ respectively at 25°C. Calculate \wedge° for Al(OH)₃.
- b) What is liquid junction potential and how is it eliminated?
- c) Write down Gibbs Phase rule for general system. Find the number of degrees of freedom at the triple point of water.
- d) What is meant by an ideal solution? Why does a solution deviate from ideality?
- e) Define ionic mobility and mention its unit.

[Turn Over]

- a) Explain the phase diagram of a two-component liquid-liquid system Phenol water system. State the Kohlrausch's law of independent migration of ions. 3+2
- Calculate the emf and ΔG° for the cell reaction at 25°C:

$$Zn_{(s)} \mid Zn^{2+} \text{ aq}(0.01M) \mid Cd^{2+} \text{aq}(0.01M) \mid Cd_{(s)}$$

Given $E^{\circ}_{Zn^{2+}/Zn} = -0.763V$ and $E^{\circ}_{Cd^{2+}/Cd} = -0.403V$. 2+3

3. Answer any **one** question:

Answer any **one** question:

2.

 $10 \times 1 = 10$

- method for determining the transport number of an ion. Discuss the working principle of the quinhydrone electrode. Is it possible to obtain pure ethanol by distilling a mixture of ethanol water? Explain.

 4+4+2
- What do you understand by Eutectic mixture?

 Illustrate it with a simple labelled phase diagram.

 Draw a plot of the variation of equivalent conductance with concentration for a strong electrolyte. Discuss the plot in the light of the theory of interionic attraction. Write down Nernst distribution law.

 2+2+2+2+2

GROUP-B

(Marks: 19)

- 4. Answer any **two** questions:
- $2\times2=4$
- a) Give the electronic configuration of Sm²⁺.
- b) What is meant by inner orbital complex?
- c) Calculate the CFSE of $[Ni(CN)_4]^{2-}$.
- d) Calculate the spin-only magnetic moment of $[Fe(H_2O)_6]^{2+}$.
- 5. Answer any **one** question:

- $5 \times 1 = 5$
- a) What is Lanthanide contraction? Give its causes and consequences. 1+2+2=5
- b) A deep blue solution containing Co(II) in conc.

 HCl gradually turns pale pink on addition of excess water. Explain. What is jahn-Teller distortion?

 3+2=5
- 6. Answer any **one** question:

- $10 \times 1 = 10$
- a) i) Give the IUPAC nomenclature of the following: $Na_2[Fe(CN)_5NO]$ and $K[PtCl_3(C_2H_4)]$.
 - ii) How do you separate lanthanides by ion exchange method?

- iii) 10 Dq increases in the order $[CrCl_6]^{3-}$ $[Cr(NH_3)_6]^{3+}$ $[Cr(CN)_6]^{3-}$
- iv) What is fac- and mer-stereoisomerism? 2+3+3+2=10
- b) Write short notes on the following (any **two**): $5 \times 2 = 10$
 - i) Spectrochemical series
 - ii) Werner's coordination theory
 - iii) Magnetic properties of lanthanides
